3.638 \(\int \frac{(d+e x) \sqrt{f+g x}}{\sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=331 \[ \frac{2 \sqrt{-a} e \sqrt{\frac{c x^2}{a}+1} \left (a g^2+c f^2\right ) \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 c^{3/2} g \sqrt{a+c x^2} \sqrt{f+g x}}-\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{f+g x} (3 d g+e f) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 \sqrt{c} g \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}}}+\frac{2 e \sqrt{a+c x^2} \sqrt{f+g x}}{3 c} \]

[Out]

(2*e*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(3*c) - (2*Sqrt[-a]*(e*f + 3*d*g)*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*Ellipt
icE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*Sqrt[c]*g*Sqrt[(S
qrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) + (2*Sqrt[-a]*e*(c*f^2 + a*g^2)*Sqrt[(Sqrt[c]*(f
+ g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]]
, (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*c^(3/2)*g*Sqrt[f + g*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.264131, antiderivative size = 331, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {833, 844, 719, 424, 419} \[ \frac{2 \sqrt{-a} e \sqrt{\frac{c x^2}{a}+1} \left (a g^2+c f^2\right ) \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 c^{3/2} g \sqrt{a+c x^2} \sqrt{f+g x}}-\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{f+g x} (3 d g+e f) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 \sqrt{c} g \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}}}+\frac{2 e \sqrt{a+c x^2} \sqrt{f+g x}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)*Sqrt[f + g*x])/Sqrt[a + c*x^2],x]

[Out]

(2*e*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(3*c) - (2*Sqrt[-a]*(e*f + 3*d*g)*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*Ellipt
icE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*Sqrt[c]*g*Sqrt[(S
qrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) + (2*Sqrt[-a]*e*(c*f^2 + a*g^2)*Sqrt[(Sqrt[c]*(f
+ g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]]
, (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(3*c^(3/2)*g*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(g*(d + e*x)
^m*(a + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(d+e x) \sqrt{f+g x}}{\sqrt{a+c x^2}} \, dx &=\frac{2 e \sqrt{f+g x} \sqrt{a+c x^2}}{3 c}+\frac{2 \int \frac{\frac{1}{2} (3 c d f-a e g)+\frac{1}{2} c (e f+3 d g) x}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx}{3 c}\\ &=\frac{2 e \sqrt{f+g x} \sqrt{a+c x^2}}{3 c}+\frac{(e f+3 d g) \int \frac{\sqrt{f+g x}}{\sqrt{a+c x^2}} \, dx}{3 g}-\frac{\left (e \left (c f^2+a g^2\right )\right ) \int \frac{1}{\sqrt{f+g x} \sqrt{a+c x^2}} \, dx}{3 c g}\\ &=\frac{2 e \sqrt{f+g x} \sqrt{a+c x^2}}{3 c}+\frac{\left (2 a (e f+3 d g) \sqrt{f+g x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} g x^2}{\sqrt{-a} \left (c f-\frac{a \sqrt{c} g}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} \sqrt{c} g \sqrt{\frac{c (f+g x)}{c f-\frac{a \sqrt{c} g}{\sqrt{-a}}}} \sqrt{a+c x^2}}-\frac{\left (2 a e \left (c f^2+a g^2\right ) \sqrt{\frac{c (f+g x)}{c f-\frac{a \sqrt{c} g}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} g x^2}{\sqrt{-a} \left (c f-\frac{a \sqrt{c} g}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{3 \sqrt{-a} c^{3/2} g \sqrt{f+g x} \sqrt{a+c x^2}}\\ &=\frac{2 e \sqrt{f+g x} \sqrt{a+c x^2}}{3 c}-\frac{2 \sqrt{-a} (e f+3 d g) \sqrt{f+g x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 \sqrt{c} g \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{c} f+\sqrt{-a} g}} \sqrt{a+c x^2}}+\frac{2 \sqrt{-a} e \left (c f^2+a g^2\right ) \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{c} f+\sqrt{-a} g}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a g}{\sqrt{-a} \sqrt{c} f-a g}\right )}{3 c^{3/2} g \sqrt{f+g x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 3.43348, size = 464, normalized size = 1.4 \[ \frac{2 \sqrt{f+g x} \left (\frac{i \sqrt{f+g x} \left (3 \sqrt{c} d+i \sqrt{a} e\right ) \left (\sqrt{c} f+i \sqrt{a} g\right ) \sqrt{\frac{g \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{f+g x}} \sqrt{-\frac{-g x+\frac{i \sqrt{a} g}{\sqrt{c}}}{f+g x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}{\sqrt{f+g x}}\right ),\frac{\sqrt{c} f-i \sqrt{a} g}{\sqrt{c} f+i \sqrt{a} g}\right )}{g \sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}+\frac{i c \sqrt{f+g x} \sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}} (3 d g+e f) \sqrt{\frac{g \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{f+g x}} \sqrt{-\frac{-g x+\frac{i \sqrt{a} g}{\sqrt{c}}}{f+g x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}{\sqrt{f+g x}}\right )|\frac{\sqrt{c} f-i \sqrt{a} g}{\sqrt{c} f+i \sqrt{a} g}\right )}{g^2}+\frac{\left (a+c x^2\right ) (3 d g+e f)}{f+g x}+e \left (a+c x^2\right )\right )}{3 c \sqrt{a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)*Sqrt[f + g*x])/Sqrt[a + c*x^2],x]

[Out]

(2*Sqrt[f + g*x]*(e*(a + c*x^2) + ((e*f + 3*d*g)*(a + c*x^2))/(f + g*x) + (I*c*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]
]*(e*f + 3*d*g)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]
*Sqrt[f + g*x]*EllipticE[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/
(Sqrt[c]*f + I*Sqrt[a]*g)])/g^2 + (I*(3*Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f + I*Sqrt[a]*g)*Sqrt[(g*((I*Sqrt[a]
)/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*Sqrt[f + g*x]*EllipticF[I*ArcSinh[
Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)])/(g*Sqrt
[-f - (I*Sqrt[a]*g)/Sqrt[c]])))/(3*c*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.265, size = 1286, normalized size = 3.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2/3*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)*((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2
)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^
(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*(-a*c)^(1/2)*a*e*g^3+(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f
))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*
EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*(-a*c)^(
1/2)*c*e*f^2*g+3*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((
c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1
/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*a*c*d*g^3+3*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2
))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticF((-(g*x+f)*c/((-a*
c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*c^2*d*f^2*g-3*(-(g*x+f)*c/((-a*c)^(
1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*
f))^(1/2)*EllipticE((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2)
)*a*c*d*g^3-(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(
-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticE((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g
-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*a*c*e*f*g^2-3*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*
g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*EllipticE((-(g*x+f)*c/((-a*c)^
(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*c^2*d*f^2*g-(-(g*x+f)*c/((-a*c)^(1/2)*
g-c*f))^(1/2)*((-c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(
1/2)*EllipticE((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*c^2
*e*f^3+x^3*c^2*e*g^3+x^2*c^2*e*f*g^2+x*a*c*e*g^3+a*c*e*f*g^2)/(c*g*x^3+c*f*x^2+a*g*x+a*f)/c^2/g^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )} \sqrt{g x + f}}{\sqrt{c x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)*sqrt(g*x + f)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e x + d\right )} \sqrt{g x + f}}{\sqrt{c x^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((e*x + d)*sqrt(g*x + f)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right ) \sqrt{f + g x}}{\sqrt{a + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x)*sqrt(f + g*x)/sqrt(a + c*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )} \sqrt{g x + f}}{\sqrt{c x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)*sqrt(g*x + f)/sqrt(c*x^2 + a), x)